
OOP MIT Fall 2012 

Resource Person: Abdul Mateen  Page 1 of 4 
 

We are all born ignorant, but one must work hard to remain stupid. Benjamin Franklin 

 Lecture 11   

Lecture 11 FOR Loop Syntax and Loop Combined with Selection 

As I already discussed we are passing through the critical stages of learning in programming. Today 
we will see syntax of for loop and discuss some scenarios where selection becomes part of 
repetition and finally we will see example where repetition becomes part of selection.  So let’s start 
to learn something new and interesting. 

For Loop 

There is nothing special about for loop except syntax which seems to be relatively simpler for 
coding. Just recall counting loop has three essential elements initialization, condition and 
increment. Syntax of for loop provides a specific place to put all 3 elements, therefore, for loop is a 
natural candidate for counting loops; however; any while loop can be written using for loop 
because syntax of for loop allows same condition as while loop. The syntax of for loop is: 

for ( stmt ; cond ; stmt ) 

example is:    for (i=1 ; i<=10 ; i=i+1) 

Just compare a program written using both while and for syntax and try to understand the small 
difference only in use: 

i=1; 
while (i<=10){ 
 System.out.print(i+" "); 
 i=i+1; 
} 

for (i=1;i<=10;i=i+1){ 
 System.out.print(i+" "); 

} 

for (i=1;i<=10; i=i+1) 
 System.out.print(i+" "); 

All these programs have same output that is 1 2 3 ... 10 in a single line. On right hand side two 
versions of for syntax is given, because there is only one line after for statement, therefore, curly 
braces are optional. See another example: 

System.out.print ("Enter Table No:"); 
t=in.nextInt(); 
for (i=1;i<=10; i=i+1) 
 System.out.println(t+"\t*\t"+i+"\t=\t"+(t*i)); 

It is very simple program to generate table of user input number. See another example: 

String space="                         "; 
for (i=0,j=10;i<6;i++){ 
 System.out.print(space.substring(0,i)+"*"); 
 System.out.println(+space.substring(0,j)+"\b*"); 
 j=j-2; 
} 

*                  * 
  *               * 
    *           * 
      *       * 
        *   * 
           * 

This program is creating V with stars. There are two space patterns used. One is before first star on 
each row and second is between first and second star in each row. First pattern is increasing by 

http://www.brainyquote.com/quotes/authors/b/benjamin_franklin.html


OOP MIT Fall 2012 

Resource Person: Abdul Mateen  Page 2 of 4 
 

one; whereas; second pattern is decreasing by 2. Therefore two variables are used "i" for first 
pattern and "j" for second pattern. "i" is incremented by one and "j" is decremented by 2. Lastly \b 
is used to erase last character before *. This helps to erase one star in last line, so you can see there 
is only one star in last row of output given on right hand side. 

Repetition with Selection 

Now we will see that selection can be a part of repetition, therefore, each time we can take some 
decision in repetition. Consider scenario we have English word and we want to show about each 
character whether it is vowel or consonant. We already did examples where we can show each 
character in single line using function of String class. See again that code before I jump to required 
code: 

String s="wonderful"; 
for (i=0;i<s.length(); i=i+1) 
 System.out.println(s.charAt(i)); 

Now we want to print information about type of each character, because each character can be 
vowel or consonant we have to apply selection that if character is equal to any of the five vowel 
characters print character is vowel otherwise it is consonant because no other choice is there. Now 
writing if (s.charAt(i)== ' a' || s.charAt(i)== ' e' … is inconvenient, therefore, it is better to use a 
character type variable to store each character than compare like: 

ch=s.charAt(i); 

if (ch== ' a' || ch== ' e' … 

Finally we can break print into two steps, because for each character we have to print that 
character and " is ", therefore we can write one print statement without next line option before if 
statement and one print statement with next line option with if statement. Finally here is code: 

String s="wonderful"; 
char ch; 
for (i=0;i<s.length(); i=i+1){ 
 ch=s.charAt(i); 
 System.out.print(s.charAt(i)+" is "); 
 if (ch=='a' || ch=='e' || ch=='i' || ch=='o' || ch=='u') 
  System.out.println("vowel"); 
 else 
  System.out.println("consonant"); 
} 

w is consonant 
o is vowel 
n is consonant 
d is consonant 
e is vowel 
r is consonant 
f is consonant 
u is vowel 
l is consonant 

Hope you have enjoyed the example and understand selection inside repetition, however, we will 
discuss more examples. Suppose for numbers 40 to 59 we want to show are they divisible by 2, 3, 4, 
… , 9. That is for each number we want to show its divisors among 2 to 9. Therefore, using 
repetition we can print numbers 40 to 59 but to show divisors we have to apply selection so that if 
number is divisible than we show divisor. Like if (i%2==0) or if (i%3==0) and so on. Therefore we will 
place selection inside repetition. Moreover because all of these checks are independent to each 
other we have independent selection statements. So here is code: 



OOP MIT Fall 2012 

Resource Person: Abdul Mateen  Page 3 of 4 
 

for (i=40;i<60;i++){ 
 System.out.print(i+" is divisible by ..."); 
 if (i%2==0) 
  System.out.print(2+","); 
 if (i%3==0) 
  System.out.print(3+","); 
 if (i%4==0) 
  System.out.print(4+","); 
 if (i%5==0) 
  System.out.print(5+","); 
 if (i%6==0) 
  System.out.print(6+","); 
 if (i%7==0) 
  System.out.print(7+","); 
 if (i%8==0) 
  System.out.print(8+","); 
 if (i%9==0) 
  System.out.print(9+","); 
 System.out.println("\b."); 
} 

40 is divisible by ...2,4,5,8. 
41 is divisible by ... 
42 is divisible by ...2,3,6,7. 
43 is divisible by ... 
44 is divisible by ...2,4. 
45 is divisible by ...3,5,9. 
46 is divisible by ...2. 
47 is divisible by ... 
48 is divisible by ...2,3,4,6,8. 
49 is divisible by ...7. 
50 is divisible by ...2,5. 
51 is divisible by ...3. 
52 is divisible by ...2,4. 
53 is divisible by ... 
54 is divisible by ...2,3,6,9. 
55 is divisible by ...5. 
56 is divisible by ...2,4,7,8. 
57 is divisible by ...3. 
58 is divisible by ...2. 
59 is divisible by ... 

Once again we have used \b to erase last comma sign. This program can be improved further by 
showing no divisor etc. but that will program complex for this stage. Last example is to print 20 to 
99 in words that is twenty to ninety nine. We intentionally selected this range because there are 
many other checks required for counting of 1 to 100. The technique we used is to separate first and 
second digit of each number that is in 38 first digit is 3 and second digit is 8. For this handy tool is 
integer division and remainder operator.  That is dividing number by 10 we will get first digit and by 
taking remainder by 10 we will get second digit: 

fDigit=76/10; 
sDigit=76%10; 

Here fDitit means first digit will be 7 and sDigit means second digit will be 6. Further we applied 
checks on first digit and assigned value Twenty to Ninety to string variable first than apply check on 
second digit and assigned value One to Nine to string variable second. Finally we print both first and 
second. We place all this inside loop and run loop from 20 to 99. Here is code: 

int fDigit, sDigit; 
for (i=20;i<=99;i++){ 
 fDigit=i/10; 
 sDigit=i%10; 
 String first="", second=""; 
 if (fDigit==2) 
  first="Twenty "; 
 else if (fDigit==3) 
  first="Thirty "; 
 else if (fDigit==4) 
  first="Fourty "; 
 ... 
 else if (fDigit==9) 
  first="Ninty "; 
 if (sDigit==1) 

Twenty      Twenty One      Twenty Two      
Twenty Three      Twenty Four    Twenty Five     
Twenty Six      Twenty Seven    Twenty Eight    
Twenty Nine     Thirty     Thirty One     Thirty Two      
Thirty Three   Thirty Four    Thirty Five   Thirty Six      
Thirty Seven    Thirty Eight     Thirty Nine   Fourty   
Fourty One      Fourty Two      Fourty Three    
Fourty Four     Fourty Five     Fourty Six             
Fourty Seven    Fourty Eight    Fourty Nine     
Fifty      Fifty One      Fifty Two       Fifty Three     
Fifty Four      Fifty Five      Fifty Six 
Fifty Seven     Fifty Eight     Fifty Nine      Sixty   
Sixty One      Sixty Two      Sixty Three   Sixty Four      
Sixty Five        Sixty Six    Sixty Seven     Sixty Eight     
Sixty Nine      Seventy        Seventy One     
Seventy Two     Seventy Three   Seventy Four    



OOP MIT Fall 2012 

Resource Person: Abdul Mateen  Page 4 of 4 
 

  second="One"; 
 else if (sDigit==2) 
  second="Two"; 
 else if (sDigit==3) 
  second="Three"; 
 ... 
 else if (sDigit==9) 
  second="Nine"; 
 System.out.print(first+second+"\t"); 
} 

Seventy Five    Seventy Six     Seventy Seven   
Seventy Eight   Seventy Nine    Eighty       
Eighty One      Eighty Two      Eighty Three        
Eighty Four     Eighty Five      Eighty Six       
Eighty Seven        Eighty Eight    Eighty Nine     
Ninty    Ninty One        Ninty Two       Ninty Three     
Ninty Four       Ninty Five      Ninty Six        
Ninty Seven     Ninty Eight     Ninty Nine 

Repetition inside Selection 

A last thing for today’s lecture is to discuss scenarios where repetition can become part of 
selection. Just consider that we want to print number from some starting value to end value and 
start value and end values are given by user as input. This is very simple to handle like: 

int start = in.nextInt(); 
int end = in.nextInt(); 
for ( ; start <= end ; start = start +1 ) 
 System.out.println(start); 

Problem is when we ask user to give input we can expect any blunder from user and somehow we 
can handle some of them like in this case we can write two loops one is from start to end and other 
is from end to start or we can also write both start to end but one is increasing and other is 
decreasing. Consider code: 

int start, end; 
Scanner in = new Scanner (System.in); 
System.out.print("Enter Starting Number:"); 
start = in.nextInt(); 
System.out.print("Enter Ending Number:"); 
end = in.nextInt(); 

if (start<=end) 
 while (start<=end){ 
  System.out.println(start); 
  start=start+1; 
 } 
else 
 while (end<=start){ 
  System.out.println(end); 
  end=end+1; 
 } 

if (start<=end) 
 while (start<=end){ 
  System.out.println(start); 
  start=start+1; 
 } 
else 
 while (start>=end){ 
  System.out.println(start); 
  start =start-1; 
 } 

Here we have given two codes, one on left hand side and second on right hand side; whereas first 6 
lines are common for both. In left hand side code we have 2 repetitions one from start to end and 
second from end to start depending on whether user give start less than end or otherwise. 
Whereas in right hand side code, we have both loop from start to end but first in incrementing 
towards end whereas second is decrementing on towards end. Lastly output of first code will be 
same if user replaces start and end; whereas in second code output will be reversed. 

For further practice see lab 6 coming soon on website InshaAllah. 


